Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Environ Virol ; 9(2): 195-207, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28160215

RESUMO

During the Amazonian flood season in 2012, the Negro River reached its highest level in 110 years, submerging residential and commercial areas which appeared associated with an elevation in the observed gastroenteritis cases in the city of Manaus. The aim of this study was to evaluate the microbiological water quality of the Negro River basin during this extreme flood to investigate this apparent association between the illness cases and the population exposed to the contaminated waters. Forty water samples were collected and analysed for classic and emerging enteric viruses. Human adenoviruses, group A rotaviruses and genogroup II noroviruses were detected in 100, 77.5 and 27.5% of the samples, respectively, in concentrations of 103-106 GC/L. All samples were compliant with local bacteriological standards. HAdV2 and 41 and RVA G2, P[6], and P[8] were characterised. Astroviruses, sapoviruses, genogroup IV noroviruses, klasseviruses, bocaviruses and aichiviruses were not detected. Statistical analyses showed correlations between river stage level and reported gastroenteritis cases and, also, significant differences between virus concentrations during this extreme event when compared with normal dry seasons and previous flood seasons of the Negro River. These findings suggest an association between the extreme flood experienced and gastrointestinal cases in the affected areas providing circumstantial evidence of causality between the elevations in enteric viruses in surface waters and reported illness.


Assuntos
Gastroenterite/virologia , Viroses/virologia , Vírus/isolamento & purificação , Brasil/epidemiologia , Inundações , Gastroenterite/epidemiologia , Humanos , Incidência , Rios/química , Rios/virologia , Estações do Ano , Viroses/epidemiologia , Vírus/classificação , Vírus/genética , Poluição da Água , Qualidade da Água
2.
Food Environ Virol ; 8(1): 57-69, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26783031

RESUMO

The Negro River is located in the Amazon basin, the largest hydrological catchment in the world. Its water is used for drinking, domestic activities, recreation and transportation and water quality is significantly affected by anthropogenic impacts. The goals of this study were to determine the presence and concentrations of the main viral etiological agents of acute gastroenteritis, such as group A rotavirus (RVA) and genogroup II norovirus (NoV GII), and to assess the use of human adenovirus (HAdV) and JC polyomavirus (JCPyV) as viral indicators of human faecal contamination in the aquatic environment of Manaus under different hydrological scenarios. Water samples were collected along Negro River and in small streams known as igarapés. Viruses were concentrated by an organic flocculation method and detected by quantitative PCR. From 272 samples analysed, HAdV was detected in 91.9%, followed by JCPyV (69.5%), RVA (23.9%) and NoV GII (7.4%). Viral concentrations ranged from 10(2) to 10(6) GC L(-1) and viruses were more likely to be detected during the flood season, with the exception of NoV GII, which was detected only during the dry season. Statistically significant differences on virus concentrations between dry and flood seasons were observed only for RVA. The HAdV data provides a useful complement to faecal indicator bacteria in the monitoring of aquatic environments. Overall results demonstrated that the hydrological cycle of the Negro River in the Amazon Basin affects the dynamics of viruses in aquatic environments and, consequently, the exposure of citizens to these waterborne pathogens.


Assuntos
Rios/virologia , Vírus/isolamento & purificação , Brasil , Monitoramento Ambiental , Estações do Ano , Vírus/classificação , Vírus/genética
3.
J Environ Manage ; 159: 58-67, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26046988

RESUMO

Conventional wastewater treatment does not completely remove and/or inactive viruses; consequently, viruses excreted by the population can be detected in the environment. This study was undertaken to investigate the distribution and seasonality of human viruses and faecal indicator bacteria (FIB) in a river catchment located in a typical Mediterranean climate region and to discuss future trends in relation to climate change. Sample matrices included river water, untreated and treated wastewater from a wastewater treatment plant within the catchment area, and seawater from potentially impacted bathing water. Five viruses were analysed in the study. Human adenovirus (HAdV) and JC polyomavirus (JCPyV) were analysed as indicators of human faecal contamination of human pathogens; both were reported in urban wastewater (mean values of 10(6) and 10(5) GC/L, respectively), river water (10(3) and 10(2) GC/L) and seawater (10(2) and 10(1) GC/L). Human Merkel Cell polyomavirus (MCPyV), which is associated with Merkel Cell carcinoma, was detected in 75% of the raw wastewater samples (31/37) and quantified by a newly developed quantitative polymerase chain reaction (qPCR) assay with mean concentrations of 10(4) GC/L. This virus is related to skin cancer in susceptible individuals and was found in 29% and 18% of river water and seawater samples, respectively. Seasonality was only observed for norovirus genogroup II (NoV GGII), which was more abundant in cold months with levels up to 10(4) GC/L in river water. Human hepatitis E virus (HEV) was detected in 13.5% of the wastewater samples when analysed by nested PCR (nPCR). Secondary biological treatment (i.e., activated sludge) and tertiary sewage disinfection including chlorination, flocculation and UV radiation removed between 2.22 and 4.52 log10 of the viral concentrations. Climate projections for the Mediterranean climate areas and the selected river catchment estimate general warming and changes in precipitation distribution. Persistent decreases in precipitation during summer can lead to a higher presence of human viruses because river and sea water present the highest viral concentrations during warmer months. In a global context, wastewater management will be the key to preventing environmental dispersion of human faecal pathogens in future climate change scenarios.


Assuntos
Fezes/virologia , Rios/virologia , Poluição da Água/prevenção & controle , Mudança Climática , Fezes/microbiologia , Floculação , Vírus da Hepatite E/genética , Vírus da Hepatite E/isolamento & purificação , Humanos , Região do Mediterrâneo , Poliomavírus das Células de Merkel/genética , Poliomavírus das Células de Merkel/isolamento & purificação , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Estações do Ano , Água do Mar/virologia , Sensibilidade e Especificidade , Espanha , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/virologia , Microbiologia da Água
4.
Water Res ; 59: 119-29, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24793110

RESUMO

Integrated river basin management planning to mitigate the impacts of economic, demographic and climate change is an important issue for the future protection of water resources. Identifying sources of microbial contamination via the emerging science of Microbial Source Tracking (MST) plays a key role in risk assessment and the design of remediation strategies. Following an 18-month surveillance program within the EU-FP7-funded VIROCLIME project, specific MST tools were used to assess human markers such as adenoviruses (HAdV) and JC polyomaviruses (JCPyV) and porcine and bovine markers such as porcine adenoviruses (PAdV) and bovine polyomaviruses (BPyV) via quantification with real-time PCR to analyze surface water collected from five sites within different climatic zones: the Negro River (Brazil), Glafkos River (Greece), Tisza River (Hungary), Llobregat River (Spain) and Umeälven River (Sweden). The utility of the viral MST tools and the prevalence and abundance of specific human and animal viruses in the five river catchments and adjacent seawater, which is impacted by riverine contributions from the upstream catchments, were examined. In areas where no sanitation systems have been implemented, sewage can directly enter surface waters, and river water exhibited high viral loads; HAdV and JCPyV could be detected at mean concentrations of 10(5) and 10(4) Genome Copies/Liter (GC/L), respectively. In general, river water samples upstream of urban discharges presented lower human viral loads than downstream sampling sites, and those differences appeared to increase with urban populations but decrease in response to high river flow, as the elevated river water volume dilutes microbial loads. During dry seasons, river water flow decreases dramatically, and secondary effluents can represent the bulk of the riverine discharge. We also observed that ice cover that formed over the river during the winter in the studied areas in North Europe could preserve viral stability due to the low temperatures and/or the lack of solar inactivation. Porcine and bovine markers were detected where intensive livestock and agricultural activities were present; mean concentration values of 10(3) GC/L indicated that farms were sometimes unexpected and important sources of fecal contamination in water. During spring and summer, when livestock is outdoors and river flows are low, animal pollution increases due to diffuse contamination and direct voiding of feces onto the catchment surface. The field studies described here demonstrate the dynamics of fecal contamination in all catchments studied, and the data obtained is currently being used to develop dissemination models of fecal contamination in water with respect to future climate change scenarios. The results concerning human and animal targets presented in this study demonstrate the specificity and applicability of the viral quantitative parameters developed to widely divergent geographical areas and their high interest as new indicators of human and animal fecal contamination in water and as MST tools.


Assuntos
Monitoramento Ambiental/métodos , Água Doce/virologia , Água do Mar/virologia , Virologia/métodos , Animais , Brasil , Europa (Continente) , Humanos , Poluentes da Água
5.
Perspect Med Virol ; 17: 177-204, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-32287592

RESUMO

Viruses in water are usually present in concentrations too low for detection by direct analysis. Virological investigation of water samples is always a multi-stage process involving concentration of viruses present followed by an appropriate detection procedure. There are several approaches to detection of viruses. Part or all of the concentrate may be inoculated into cell cultures to detect infectious cytopathogenic virus, and if this is done in a quantitative fashion the virus can be enumerated, the count being reported as plaque-forming units, the tissue culture infectious dose, or most probable number units. The virus may be isolated and identified from the cell cultures. Viruses that multiply without producing an identifiable cytopathic effect in culture may sometimes be detected by immunoperoxidase or immunofluorescence staining. The concentrate may also be analyzed by molecular biological procedures (usually polymerase chain reaction (PCR) or real-time-PCR). The problem then is that such techniques do not usually detect the infectious virus, and novel approaches have been made recently to meet this challenge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...